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We study reaction-diffusion systems where diffusion is by jumps whose sizes are
distributed exponentially. We first study the Fisher-like problem of propagation of a
front into an unstable state, as typified by the A+B → 2A reaction. We find that the
effect of fluctuations is especially pronounced at small hopping rates. Fluctuations are
treated heuristically via a density cutoff in the reaction rate. We then consider the case
of propagating up a reaction rate gradient. The effect of fluctuations here is pronounced,
with the front velocity increasing without limit with increasing bulk particle density. The
rate of increase is faster than in the case of a reaction-gradient with nearest-neighbor
hopping. We derive analytic expressions for the front velocity dependence on bulk
particle density. Computer simulations are performed to confirm the analytical results.

KEY WORDS: Front propagation, reaction-diffusion.

Many physical, chemical, and biological systems exhibit fronts which prop-
agate through space. Familiar examples range from chemical reaction dynamics
such as flames(1), phase transitions such as solidification(2), the spatial spread of
infections(3), and even the fixation of a beneficial allele in a population(4). It is thus
of great interest to understand the universality classes of fronts which govern what
will happen when systems such as these are prepared in a spatially heterogeneous
manner. These classes determine the selection of propagation speed, the sensitiv-
ity to particle-number fluctuations, and the stability of the front with respect to
deviations from planarity.

The simplest kind of such a front is that wherein a stable phase replaces a
metastable one(2). Here the mean-field front velocity is determined via the require-
ment that there exists a heteroclinic trajectory of the moving-frame steady-state
problem (wherein the solution depends only on x − vt) connecting the metastable
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phase at +∞ with the stable one at −∞. This type of front is robust with respect
to fluctuations, with power-law corrections in 1/N (where N is the number of
particles per site in the final state) to the mean-field limit (5). A second class is
exemplified by the simple infection model A + B → 2A on a 1d lattice (with
spacing a) with on-site reaction with equal A and B hopping rates(3); this process
leads in the mean-field limit to a spatially discrete version of the Fisher equation(4)

φ̇(x) = rφ(x) (1 − φ(x)) + D

a2
(φ(x + a) − 2φ(x) + φ(x − a)) . (1)

Here propagation is into the linearly unstable φ = 0 state, where φ is the number
of A particles at a site. Recent work(5–8) has shown that the front behavior in the
stochastic model does approach that of the Fisher equation, where the velocity is
selected by the (linear) marginal stability criterion(9) to be 2

√
r D, albeit with an

anomalously long transient O(1/t) and anomalously large fluctuation corrections
O(1/ ln2 N ). The key technical tool which has allowed progress in treating the
stochastic model is the observation that introducing(6,10,11) a cutoff in the reaction
term when the density of particles falls below some threshold reproduces the major
effects caused by the discrete nature of the reacting particles(12). There are also
some findings in regard to both front stability in the case of unequal D(13), and
also the scaling properties of front fluctuations(14). Finally, there are also fronts
which have properties intermediate to the previous two classes.

In a recent work(15,16), we introduced a new class of fronts corresponding to
propagation into an unstable state up a reaction-rate gradient(17,18). This type of
gradient is present, for example, in systems with an inherent spatial inhomogeneity,
and also in models of Darwinian evolution(19–22), (where the birth rate, which
is parallel to our reaction rate, is proportional to fitness x). We found that the
sensitivity to fluctuations in the presence of such a positive reaction-rate gradient
is greatly enhanced. In particular, the front velocity diverges with increasing bulk
particle density. As a corollary, the standard reaction-diffusion equation treatment
is not useful, as it gives rise to finite-time singularities in the velocity. Also, the
velocity is strongly sensitive to details of diffusion, with the increase of the velocity
with density being qualitatively stronger for a lattice system than in the continuum.

Given this sensitivity to the precise implementation of diffusion, in this work
we turn to the study the effect of implementing diffusion via infinite-range hop-
ping, where the size of the jumps is distributed exponentially. Such a model has
been considered, for example, in the description of the airborne dispersion of
seeds, leading to the spread of a particular colony of plants(23). It is also relevant in
the evolution context, where the change in fitness due to mutations is commonly
assumed to be exponentially distributed(24). We will see that even in the absence
of a gradient, this form of diffusion increases dramatically the effect of fluctua-
tions, at least for small hopping rates. In particular, the naive reaction-diffusion
formalism predicts a finite velocity in the limit of zero hopping rate, which is
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clearly unphysical, given the on-site nature of the reaction. Introducing a reaction-
rate gradient again changes the functional dependence of the velocity on density
from that of the nearest-neighbor hopping studied previously.

The plan of the paper is as follows. In Sec. 1, we discuss the gradient-free
model, and derive the velocity in the limit of infinite density. We show that for
fixed hopping rate, the finite density correction formula derived by Brunet and
Derrida for the Fisher equation is applicable. However, this formula breaks down
in the small hopping rate limit. We derive an analytical expression for the velocity
in this limit. In Sec. 2, we discuss a similar model of Snyder(23) designed to model
the spread of colonies, showing that the same physics applies upon the appropriate
mapping of parameters. In Sec. 3, we introduce our reaction-rate gradient model,
and after briefly reviewing what is known for continuum diffusion and nearest-
neighbor hopping, we calculate an analytical approximation to the velocity for large
density. Finally, in Sec. 4, we summarize our results and draw some conclusions.
Technical details on the numerical and simulational procedures are relegated to an
appendix.

1. EXPONENTIAL HOPPING FISHER EQUATION

As a prototypical system, we consider a long-range hopping version of the A +
B → 2A infection model previously considered for the case of nearest-neighbor
hopping(3,5,6). The model is defined on a 1-D lattice with no restriction on multiple
occupancy of sites. The initial state is taken to be a constant number N of B
particles on every site, with a single A introduced at the left-most site. An A
and B particle residing on the same site have some probability per unit time
r/N of interacting and transforming the B to an A. We implement long-range
hopping by taking the hopping probability per unit time to have an unbounded
range, decreasing exponentially with distance (25). (See the appendix for details on
simulating this model.) The naive reaction-diffusion description of this stochastic
particle model is a type of Fisher equation (4), with a modified diffusion term: In
the continuum limit, this equation reads:

φ̇(x) = Dβ3

2

∫ ∞

0
dse−βs (φ(x + s) + φ(x − s)) − Dβ2φ(x) + rφ(x) (1 − φ(x)),

(2)
where φ(x) is the density of A’s at x , relative to the initial (constant) density of
B’s. The steady-state equation is:

Dβ3

2

∫ ∞

0
dse−βs (φ(x + s) + φ(x − s)) − Dβ2φ(x) + vφ′(x)

+ rφ(x) (1 − φ(x))) = 0. (3)
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It is useful to convert this equation into a differential equation using the fact that

O±
∫ ∞

0
dse−βsφ(x ± s) ≡

(
β ∓ d

dx

) ∫ ∞

0
dse−βsφ(x ± s) = φ(x). (4)

Then, acting upon Eq. (3) by O+O− yields

Dβ2φ′′ +
(

β2 − d2

dx2

)
(vφ′ + rφ(1 − φ)) = 0 (5)

Our first task, then, is to study this equation, comparing it to the standard
Fisher equation, as a preliminary to discussing its defects as a description of our
stochastic A + B → 2A model. As with the standard Fisher equation, this equation
has solutions for all velocities, and positive definite solutions for all velocities
greater than some critical velocity, the so-called marginally stable velocity, vF ,
which is the asymptotic velocity of propagation of all fronts with initial compact
support. This can be found from the dispersion relation for the leading edge where
φ ∼ e−kx :

Dβ2k2 + (β2 − k2)(−vk + r ) = 0 (6)

The marginally stable velocity, vF , is then given by the requirement that Eq. (6)
has a degenerate solution, leading to the discriminant condition

0 = d

dk

[
Dβ2k2 + (β2 − k2)(−vk + r )

] = 2Dβ2k − β2v + 3vk2 − 2rk. (7)

Solving simultaneously Eqs. (6) and (7) yields, introducing t ≡
√

D2β4 + 8Dβ2r

vF =
√

2(5Dβ2 + 4r + 3t)

8β

√
Dβ2 + 2r − t

r − Dβ2
(8)

This has the scaling form vF = 2
√

r D f (β2 D/r ) where the function f (x) → 1
for x → ∞ and f (x) ∼ 1/(2

√
x) as x → 0. Thus, for large β, we recover the usual

Fisher answer, which is reasonable since in this limit the hopping is effectively
short-range. What is remarkable is that the velocity has the finite limit r/β as
D → 0, so that we have velocity without diffusion!

1.1. Calculation of the Velocity for a Small Cutoff

This anomaly is yet another example of how the reaction diffusion equation,
Eq. (2), provides incorrect information about the original stochastic model. A
more accurate picture is achieved by studying a cutoff version of the equation,
wherein the reaction is turned off wherever φ(x) is less than some threshold ε,
of order 1/N (5,6,10,11,19). This captures an essential feature of the original model,
namely that the reaction zone always has compact support. Brunet and Derrida(6)
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have provided a general formula for the correction induced in the velocity due to
the cutoff (for small cutoffs) for Fisher-like equations. This formula reads

vε = vF − v′′(kF )π2k2
F

2(ln ε)2
. (9)

where kF is the degenerate solution of the dispersion relation, Eq. (6). Although
derived for second order equations, whereas our equation is of third order, nev-
ertheless, as we shall see, it correctly gives the leading order correction for the
velocity in our case as well.

1.1.1. Jump Conditions at the Cutoff Point

The first task, as for the standard Fisher equation, is to solve the equation for
the region beyond the cutoff, where φ(x) < ε. This will give a set of boundary
conditions at the cutoff point, xc. Due to the third-order nature of our equations, and
that the derivatives act on the now discontinuous reaction term, these conditions
are fairly messly. While the solution is continuous at the cutoff point, there is no
continuity of the first and second derivatives at this point.

To derive the correct jump conditions, we start from the integral equation,
Eq. (3). For the rightmost region, x > xc, the solution is φx = εe−kr (x−xc), where
kr satisfies the r = 0 dispersion relation

Dβ2k2
r − (

β2 − k2
r

)
vkr = 0 (10)

or,

kr = −Dβ2 +
√

D2β4 + 4β2v2

2v
(11)

Thus, ∫ ∞

0
dse−βsφ(xc + s) = ε

β + kr
(12)

Evaluating the integral equation, Eq. (3), as x → x+
c gives

Dβ3

2

[
ε

β + kr
+

∫ ∞

0
dse−βsφ(xc − s)

]
− Dβ2ε − vkrε = 0 (13)

This, together with Eq. (10), yields∫ ∞

0
dse−βsφ(xc − s) = ε

β − kr
(14)

Now, let us analyze Eq. (3) for x → x−
c . We get

φ′(x−
c ) = −rε(1 − ε)

v
− krε (15)
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We break up Eq. (3) as follows,

0 = Dβ3

2

[∫ xc−x

0
dse−βsφ(x + s) +

∫ ∞

xc−x
dse−βsφ(x + s)

+
∫ ∞

0
dse−βsφ(x − s)

]
− Dβ2φ + vφ′ + rφ(1 − φ)

= Dβ3

2

[
e−β(xc−x) ε

β + kr
+ eβ(xc−x) ε

β − kr
− 2

∫ xc−x

0
ds sinh(βs)φ(x + s)

]

− Dβ2φ + vφ′ + rφ(1 − φ) (16)

and upon taking a derivative and evaluating at x−
c we get

Dβ3

2

[
β

ε

β + kr
− β

ε

β − kr

]
− Dβ2φ′(x−

c ) + vφ′′(x−
c )

+ rφ′(x−
c )(1 − 2φ(x−

c )) = 0 (17)

or

φ′′(x−
c ) = ε

−β2vr + v2k3
r + 2vrk2

r + r2kr

krv2

+ ε2 β2vr − 3vrk2
r − 3r2kr

krv2
+ ε3 2r2

v2
. (18)

1.1.2. The Modified BD Treatment

As in the original BD treatment, we divide the range of x < xc into two
regions. In the first region, φ(x) is not small compared to 1, but the effect of the
cutoff is negligible. In the second region ε < φ(x) << 1. We fix the translation
invariance by requiring φ(0) = 1/2. Then as ε → 0, xc → ∞. In the first region,
we can take the velocity to be vF , so that there is a degenerate solution of the
dispersion relation. Then, for large x , the dominant solution is

φ(x) ∼ Axe−kF x (19)

In the second region, since the velocity is close to vF , vε = vF − �, � 	 1, the
general solution is:

φ(x) ∼ Be−kF x sin(ki x + C) + Fe−k2x . (20)

where k2 < 0 is the third (nondegenerate) root of the dispersion relation and ki ∼√
� and we can ignore the 0(�) shift in the real part of k. Matching between the

first and the second region requires that B = A/ki , C = 0 and Fe−(k2−kF )xc 	 1.
Now, in general, we have to enforce three jump conditions, (whose left hand sides
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are �-independent to leading order), with the two free parameters B and F , which
is impossible. The only way to make things work is to have sin(ki xc) be of the
same order as ki cos(ki xc), in other words ki xc ≈ π − O(�1/2), which is exactly
the same condition as in the original BD treatment, where there was one free
parameter and two jump conditions. Since

ki =
√

2�

v′′(kF )
(21)

we immediately recover the BD result quoted above, Eq. (9).
Examining the BD result, we see that in the limit of Dβ2/r � 1, kF ∼ √

r/D
and v′′(kF ) ∼ 2

√
D3/r , so that

vε ∼ vF − π2
√

r D

ln2 ε
(22)

which is of course the Fisher result. On the other hand, when Dβ2/r 	 1, kF ∼
β − β2

√
D/2r and v′′(kF ) ∼ (2r )3/2/β4/

√
D, and so

vε ∼ vF − π2(2r )3/2

2β2
√

D ln2 ε
(23)

Thus the BD correction diverges as D → 0. Thus, while for sufficiently small
ε, the BD correction is correct, for a given ε, the BD correction fails for small
enough D. We show in Figs. 1 and 2 a plot of vF and the BD velocity for ε = 10−5,
compared to the results of an exact numerical calculation. In Fig. 2 it can be seen
as predicted that the BD treatment does not apply for small D. A calculation in
this limit is presented in the next subsection.

Fig. 1. v vs. large D for exponential Fisher model. Analytical formula for v0 (8), and analytical formula
for vε (9), compared to numerical results. ε = 10−5, β = 1. (color online).
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Fig. 2. v vs. small D for exponential Fisher model. Analytical formula for v0 (8), and analytical
formula for vε (9), compared to numerical results. ε = 10−5, β = 1 (color online).

1.2. Small D, Small ε Limit

Clearly, in the presence of a cutoff, the velocity should vanish as D → 0. Let
us solve the model in this limit. First, let us examine what happens when D = 0.
Then, for small ε we can linearize around the ε = 0 solution φ0 = 1

1+er x/v , writing
φ = φ0 + δ. The equation for δ reads

(
β2 − d2

dx2

) (
vδ′ + rδ(1 − 2φ0)

) = 0 (24)

The general solution with δ(0) = 0, so that the center of the front does not move,
is given by

δ = 1

v cosh2
(

r x
2v

) ∫ x

0
cosh2

(r x

2v

) (
Ae−βx + Beβx

)
(25)

What is important is the large-x asymptotics of δ:

δ ∼ A

r − βv
e−βx + B

r + βv
eβx (26)

We can now use the jump conditions, with kr = β since D = 0, to fix xc, A and
B. We get, to leading order in ε,

e−r xc/v = ε
r

r − βv

Ae−βxc = −εvβ

B = 0 (27)
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The interesting question is now the behavior at x → −∞. The leading asymptotics
is

δ ∼ − A

r + βv
e−βx (28)

which diverges and so violates the boundary conditions. Thus, there is no solution
without D. To leading order in D, we get an inhomogeneous term, Dβ2φ′′

0 , on
the left-hand-side of Eq. (24). The inhomogeneous solution, δD , then satisfies the
equation

vδ′
D + r tanh

(r x

2v

)
δD =

∫ ∞

−∞
dyG(x − y)

(−Dβ2r2

4v2

)
sinh

( ry
2v

)
cosh3

( ry
2v

) (29)

where G is the Green’s function for the operator β2 − d2

dx2 ,

G(x − y) = 1

2β
e−β|x−y| (30)

so that

δD = 1

v cosh2
(

r x
2v

) ∫ x

0
dx ′ cosh2

(
r x ′

2v

) ∫ ∞

−∞
dyG(x ′ − y)

(−Dβ2r2

4v2

)
sinh

( ry
2v

)
cosh3

( ry
2v

)
(31)

We need the asymptotic behavior of δD for large x . For r/v � β, the integral is
dominated by the region of x ′ large, y ≈ 0. Thus,

δD ∼ 4e−r x/v

v

∫ x

−∞
dx ′ er x ′/v

4

∫ ∞

−∞
dy

e−βx ′

2β

(
1 + βy + β2 y2

2
+ · · ·

) (−Dβ2r2

4v2

)
sinh

( r y
2v

)
cosh3

( r y
2v

)
= − Dβr2

8v3
e−r x/v

∫ x

−∞
dx ′er x ′/ve−βx ′

(
β

(
2v

r

)2

+ β3

8

(
2v

r

)4
π2

4
+ · · ·

)

= − Dβ2

2v

1
r
v

− β
e−βx

(
1 + β2v2π2

8r2
+ · · ·

)
(32)

We now have to again solve the jump conditions with this new contribution. The
coefficient A above is now modified and includes a term which, up to linear order
in βv/r , reads

AD = β2 D

2

(
1 + βv

r

)
(33)

The condition for a solution is that this cancels the A we found above, so that

β2 D

2

(
1 + βv

r

)
= εvβeβxc (34)
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Fig. 3. Comparison of our analytic approximation, Eq. (35) and an exact numerical solution of Eq. (5).
Parameters are ε = 10−6, β = r = 1. (color online).

or

D = 2εv

β
(

1 + βv

r

)e−βv/r ln(εr/(r−βv)) = 2vr

β(r + βv)
ε1−βv/r

(
r

r − βv

)−βv/r

(35)

Thus, for very small D, the velocity is equal to Dβ/(2ε), which is reminiscent of
the behavior of evolution models for very small mutation rates(20). The comparison
between our analytic approximation and an exact numerical solution is shown in
Fig. (3). We see that the approximation does very well until v is close to r/β, when
our approximation has D decreasing to 0, and so clearly breaks down.

2. THE SNYDER DISCRETE-TIME MODEL

Recently, Snyder(23) introduced a model of colony spreading which, in one
variant, involved an exponentially-distributed hopping similar to the model defined
above. The essential difference between her model and ours is that hers was a
discrete-time model. In each time step, all the offspring performed a hop and the
parental generation was removed. The number of offspring at a given site was
given by a local logistic growth law, similar to that incorporated in the Fisher
model. Snyder performed numerical simulations and measured the velocity of
propagation, both for the stochastic model, and for the corresponding (uncutoff)
reaction-diffusion system, and found a difference between these two velocities.
Due to its close correspondence to the present model under investigation, it is
useful to derive analytically the uncutoff velocity and the BD approximation to
the cutoff velocity, so as to make clear the mapping between the Snyder model
and ours.
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As always, to derive the uncutoff “Fisher” (marginally-stable) velocity, it is
enough to consider the linearized version of the Snyder model, which reads

φt+1(x) = rSβ

2

∫ ∞

−∞
φt (y)e−β|y−x |dy (36)

where rS is the average number of offspring per individual and φt (y) is the number
of individuals at site y at (integer) time t . We assume that the dependence of φ on
t and y is

φt (y) = φ(y − vt), (37)

and

φt (y) = e−α(y−tv). (38)

putting (38) in (36) yields:

eαv = rSβ
2

β2 − α2
. (39)

Taking the derivative by α of (39) (according to the marginal stability criterion),
and dividing it by (39) yields:

vF = 2αF

β2 − α2
F

. (40)

We can eliminate αF to obtain a direct relationship between r and vF as
follows:

αF =
−1 +

√
v2

Fβ2 + 1

vF
. (41)

so

rS =
2
(√

1 + v2
Fβ2 − 1

)
e
√

v2
F β2+1−1

v2
Fβ2

, (42)

It is reassuring that this formula reproduces the velocity measured by
Snyder for the one set of parameters presented in her paper. For rS near 1,
v ∼ 2

√
(rS − 1)/2/β, while for large rS , v ∼ ln(rS)/β. Of course, on dimen-

sional grounds this is reasonable, since v is a velocity per round, which has units
of length, and rS is dimensionless. We see that rS near 1 corresponds to the Fisher
limit, equivalent to the large Dβ2/r limit of our model, since the growth rate of
the population is rS − 1, so that small rS − 1 corresponds to a large value of our
dimensionless control parameter. The two models agree also at large rS , since in
one round of time extent �t , the population increases by a factor er�t − 1, which
is just rS , so that r = ln(rS)/�t . Plugging this into the results for our model for
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Fig. 4. Snyder model: vF vs. rS according to (40) and the BD correction vε vs rS . β = 0.5 (color
online).

large r , the velocity is r/β, which is ln(rS)/(β�t). The distance travelled in one
round is the ln(rS)/β, exactly as in the Snyder model. Equivalently, for small D
in our model, the time for one round in the Snyder model is proportional to 1/D,
since in the Snyder model, everyone hops in every round, so the weaker diffusion
is, the longer a Snyder round must be to allow time for everyone to hop. Thus, for
a given r , rS is very large, and so by the above argument the distance travelled in
one round is large, proportional to 1/D. But, since the duration of the round also
scales as 1/D, the velocity per unit time in our model remains finite, as we have
seen.

We can also immediately write down the BD correction, vε = vF −
v′′(αF )π2α2

F

(ln ε)2 . A graph of Snyder velocity with and without the correction is shown
in Fig. 4. We see that the larger rS is, the larger the correction according to BD is,
since as discussed above, increasing rS corresponds to decreasing the strength of
diffusion in our model.

3. EXPONENTIALLY DISTRIBUTED HOPPING WITH A

REACTION-RATE GRADIENT

In a previous work(15,16), we studied the case of fronts propagating into an
unstable state up a reaction-rate gradient. We focused again on the A + B → 2A
reaction (3), with an initial mean number N of A particles only in the region
x < x0 and B particles only, with the same mean density N , for x > x0, but now
with a reaction probability that depended linearly on spatial position. This type
of gradient would be a natural consequence of spatial inhomogeneity, or could
be imposed via a temperature gradient in a chemical reaction analog. Also, this
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type of system arises naturally in models of Darwinian evolution(19,21), (where
fitness x is the independent variable; the birth-rate, akin to the reaction-rate here,
is proportional to fitness). The naive equation describing such a model is the Fisher
equation (1) with a reaction strength r = ra(x) varying linearly in space

ra(x) = max(rmin, r0 + αx). (43)

where rmin is introduced to ensure that the reaction rate stays positive far behind
the front, and has no effect on the velocity. This model gives rise to an accelerating
front. We also introduced a quasi-static version of the model, wherein the reaction
rate function moves along with the front:

rq (x) = max(rmin, r̃0 + α(x − x f )), (44)

with x f is the instantaneous front position. This quasi-static problem should lead
to a translation-invariant front with fixed speed vq (r̃0, α). Although important
on its own, one might also try to view the quasi-static problem as a zeroth-
order approximation to the original model, (the absolute gradient case), where by
ignoring the acceleration, one obtains an adiabatic approximation to the velocity
v(t ; r0, α) � vq (r̃0(t), α) with r̃0(t) = r0 + αx f (t). In both models, fluctuations
become crucial due to the reaction gradient and the presence of the gradient leads
to a new class of fronts. One characteristic of this new class is the divergence of
the front velocity with N . We found that, to leading order, the velocity of the front
in the continuum limit diverges as ln1/3(N ), and to leading order on a lattice, the
velocity diverges as

√
ln N . It should be noted that in both cases the leading order

does not yield an accurate solution, and the next order correction must be taken
into account.

Given that the nature of the divergence of the velocity with N depends on the
microscopic implementation of diffusion (continuum versus lattice), it is natural
to investigate this question for our model with exponentially distributed hopping.
Here, we chose to work on a lattice (with spacing a); we will see in the end that
the results here are not sensitive to the presence of the lattice. The model we study
is:

∂φi

∂t
= D

(eγ − 1)3

a2eγ (eγ + 1)


 ∞∑

j=1

(e−γ j (φi+ j + φi− j )) − 2
φi

eγ − 1




+ r (i)φi (1 − φi )θ (φi − ε), (45)

where γ ≡ βa is the rate of exponential falloff of the hopping between successive
lattice sites. It is easy to verify that this model reproduces continuum diffusion
with coefficient D for sufficiently smooth fields φi . We choose to focus on the
quasi-static problem, as the presence of a steady-state solution makes the problem
analytically tractable. The steady-state solution on the lattice has the Slepyan(26)
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form

φi (t) = φ(t − ia/v) (46)

so that each lattice point experiences the same history, with a time shift. We define
the continuous variable z = −v(t − ia/v), in terms of which

0 = D
(eγ − 1)3

a2eγ (eγ + 1)


 ∞∑

j=1

[
e−γ j (φ(z + aj) + φ(z − aj))

] − 2
φ(z)

eγ − 1




+ r (z)φ(z)(1 − φ(z))θ (φ(z) − ε) + vφ′(z), (47)

We wish to solve this equation for small ε, assuming that v will be large
in this limit. Relying on our previous analysis of the nearest-neighbor hopping
problem(15,16), we expect that the leading order solution for the velocity comes
from the region of the front where φ is small, so the nonlinear φ2 term can
be dropped. We assume(15,21,27) a WKB-type solution φ(z) = eS(z), and expand
S(z ± aj) ≈ S(z) ± aj S′, so equation (47) reduces to

0 = 4D

a2
(eγ − 1)2 sinh2(aS′/2)

e2γ + 1 − 2eγ cosh(S′a)
+ r0 + αz + vS′. (48)

As in the nearest-neighbor hopping problem, the only way to match to the post-
cutoff solution is to require that the front be close to the classical turning point.
In order to find the turning point, we need to equate the derivative of (48) with
respect to S′ to zero. Doing so we get:

0 = 2D

a
(eγ − 1)4 sinh(S′

∗a)

(e2γ + 1 − 2eγ cosh(S′∗a))2
+ v. (49)

where S′
∗ is the value of S′ at the turning point. For large γ , Eq. (49) indeed

matches the nearest-neighbor hopping result. For large v, the denominator of the
first term in Eq. (49) has to be close to 0 in order to balance the second term. As
the denominator vanishes if aS′

∗ = −γ , this gives

S′
∗ = −γ

a
+

√
D

2a3 e−2γ (eγ −1)4

sinh(γ )√
v

(50)

which is correct for v � Dγ /a. From (50) one can obtain that, for fixed β ≡ γ /a,
S′

∗ is only weakly dependent on a for 0 ≤ a ≤ 1 as long as β is not too large, β ≤ 2.
For example, for β = 1, S′

∗ = −1 + √
D/v for a → 0 and −1 + 1.0019

√
D/v for

a = 1. This is reasonable, since the long-range nature of the hopping (for not too
large β’s), smooths over the lattice structure.

The fact that |S′
∗| is bounded by β is the unique feature of our exponentially-

distributed hopping. We remind the reader that for standard continuum diffusion,
S′

∗ = −v/(2D), and so |S′
∗| grows unboundedly with v, while for nearest-neighbor
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hopping, |S′
∗|, though not linearly dependent, still grows logarithmically with v.

The faster the growth of |S′
∗|, the weaker the dependence of the velocity on ln(ε).

This confirms our initial intuition that the exponentially distributed hopping model
should be more sensitive to fluctuations that even the nearest-neighbor hopping
model. It also reiterates why the lattice parameter a is not important (for β not
large), since the rate of exponential falloff of φ is bounded by β, and so never gets
so large as to be affected by the lattice.

Since the turning point is close to the cutoff point, the dominant contribution
to the value of φ is eS∗ , where S∗ is the value of S at the turning point (assuming
S(0) = 0). This is given as:

S∗ =
∫ z∗

0
dzS′ =

∫ S′
∗

0
d S′S′ dz

d S′

=
∫ S′

∗

0
d S′S′

(
− 1

α

) [
2D

a

(eγ − 1)4 sinh(S′a)

(e2γ + 1 − 2eγ cosh(S′a))2
+ v

]

= − D(eγ − 1)4

αa2eγ

[
S′

∗
e2γ + 1 − 2eγ cosh(S′∗a)

− 1

a(e2γ − 1)
ln

(
eγ+aS′

∗ − 1

eγ − eaS′∗

)]

−v(S′
∗)2

2α
(51)

To leading order, φc ≡ φ(zc) = eS∗ . In order to get the correction for S∗, we write,
in the vicinity of the turning point,

φ(z) = eS′
∗zψ(z). (52)

Equation (52) smooths the variation between lattice points in the vicinity of the
turning point, so we can expand ψ(z ± aj) in a Taylor series, ψ(z ± aj) ≈ ψ(z) ±
ajψ ′(z) + (aj)2ψ ′′(z)/2. Doing this and performing the sums over j yields, after
some algebra,

0 = D
(eγ − 1)4

[
(e2γ + 1) cosh(S′

∗a) + 2eγ cosh2(S′
∗a) − 4eγ

]
(e2γ + 1 − 2eγ cosh(S′∗a))3

ψ ′′(z)

+ α(z − z∗)ψ(z) (53)

This is the Airy equation. The solution of (53) is

ψ(z) = Ai

(
z∗ − z

�

)
. (54)

where we have introduced the length

� =
(

D(eγ − 1)4
[
(e2γ + 1) cosh(S′

∗a) + 2eγ cosh2(S′
∗a) − 4eγ

]
α(e2γ + 1 − 2eγ cosh(S′∗a))3

) 1
3

. (55)
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Since the first zero of the Airy function is at −2.338, this implies that the zero
of ψ lies a distance of 2.338� beyond the turning point. To leading order, ln φ

decreases by an amount 2.338S′
∗� over this distance. Adding this to Eq. (51) yields:

ln

(
1

ε

)
= D(eγ − 1)4

αa2eγ

[
S′

∗
e2γ + 1 − 2eγ cosh(S′∗a)

− 1

a(e2γ − 1)

× ln

(
eγ+aS′

∗ − 1

eγ − eaS′∗

)]
+ 1

2α
(S′

∗)2v − 2.338S′
∗

(
α

D(eγ − 1)4

)− 1
3

×
(

(e2γ + 1 − 2eγ cosh(S′
∗a))3[

(e2γ + 1) cosh(S′∗a) + 2eγ cosh2(S′∗a) − 4eγ
]
)− 1

3

(56)

Again, this solution matches our previous solution for β >> 1(15,16). In the
continuum limit, which as we noted above is accurate for β ≤ 2, this equation
becomes

ln

(
1

ε

)
= Dβ4

α

[
S′

∗
β2 − (S′∗)2

]
− Dβ3

2α
ln

(
β + S′

∗
β − S′∗

)

+ 1

2α
(S′

∗)2v − 2.338S′
∗

(
α

Dβ4

)− 1
3

([
β2 − (S′

∗)2
]3

β2 + 3(S′∗)2

)− 1
3

(57)

Substituting the continuum limit of our expression for S′
∗ in the above and expand-

ing for large v yields

ln

(
1

ε

)
= β2v

2α
+ √

v

[
−

√
2Dβ5

α
+ 2.338

21/6√β

α1/3 D1/6

]

+ Dβ3

4α
(2 + ln

(
8v

Dβ

)
) − 2.338

22/3 D1/3β

α1/3
(58)

which is still fairly messy. To test these formulas, we present in Fig. 5 the velocity
versus ln(1/ε), comparing between Eqs. (56) and (51) and numerical results from
direct integration of the time-dependent equation. We see that the agreement
between theory and simulation is quite good, and that the correction term is not
negligible for this range of ln(1/ε).

The first interesting thing to note about our analytic result is that asymptoti-
cally, for small cutoff, the velocity is proportional to ln (1/ε), with a coefficient
independent of D. This is reminiscent of the “velocity without diffusion” we saw
in the zero-gradient case in the absence of a cutoff. We can see this point clearly
in Fig. 6 where we graph v/ ln (1/ε) as a function of 1/

√
ln(1/ε) for D = 1
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Fig. 5. v vs. ln(N ) for D = 1, a = 1, α = 0.1, B = 1. Numerical simulations are compared to the 1st
order formula, Eq. (51) and the 2nd order formula, Eq. (56). (color online).

and D = 4. It is clear that the two graphs are converging to the same value of
β2/(2α) = 0.2.

In Fig. 7 we present results for v versus α, again comparing the analytic
formulas Eqs. (56) and (51) to the results of direct simulation. Again the agreement
is very satisfying. For large α the “correction” term is dominant and the velocity
grows as.

v ∼ 0.1452
ln2(1/ε)α2/3 D1/3

β
(59)

Fig. 6. v/ ln(1/ε) vs. ln−1/2(1/ε) for D = 1, a = 1, α = 0.1, r0 = 1. The data presented are from
numerical simulations of the cutoff deterministic equation. (color online).
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Fig. 7. v vs. α for D = 1, β = 1, a = 1, r0 = 1, ln(N ) = 25. Numerical simulations are compared to
the 1st order formula, Eq. (51) and the 2nd order formula, Eq. (56). (color online).

Unfortunately, this asymptotic result is only valid for extremely large α �
ln3(1/ε).

The dependence of the velocity on the diffusion constant D is presented in
Fig. 8, where we again present a comparison with our theoretical prediction. It
is seen that as D grows, v/D decreases, and so our analytic approximation for
S′

∗ becomes increasingly less reliable. Further analysis shows that in fact for very
large D, S′

∗ ≈ v/(2D) 	 1, and the calculation reverts to that of the standard
continuum diffusion presented in(15), where v ∼ f (α, ε)D2/3, and the prefactor
f ∼ (24α ln(1/ε))1/3 for ε → 0. We can verify this result by replotting the data in
Fig. 9, this time showing v/D2/3, which is seen to be consistent with an approach to

Fig. 8. v vs. D for β = 1, a = 1, α = 0.1, r0 = 1, ln(1/ε) = 25. Numerical simulations are compared
to the 1st order formula, Eq. (51) and the 2nd order formula, Eq. (56). (color online).
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Fig. 9. v/D2/3 vs. D for β = 1, a = 1, α = 0.1, r0 = 1, ln(1/ε) = 25. Data presented are from
numerical simulations of the deterministic cutoff equation. (color online).

a constant close to (24α ln(1/ε))1/3 = 3.91. This reversion to continuum diffusion
for large D is reasonable, since if diffusion is fast enough, it is irrelevant how it
is implemented. For extremely small D our calculation becomes unreliable, since
there one is not allowed to truncate to an Airy equation. We expect, similar to what
we occurs in the evolution problem, that the velocity will be proportional to D/ε

in this limit.
Lastly, Fig. 10 shows a comparison between (56), (51) and numerical results

for v vs. the rate of falloff of the hopping distribution, β. For large β, the problem
reverts to the nearest neighbor hopping model, so v should approach a constant in
that limit, consistent with the data presented. For small γ , again the “correction”
term is dominant and we recover the large α result, Eq. (59), with v diverging
as 1/β. We therefore plot vβ versus β in Fig. 11, where we see that the data is
consistent with vβ approaching the constant 0.1452 ln2(1/ε)α2/3 D1/3 = 19.55 for
small β.

The last task before us is to test if our cutoff theory is a good approximation
for the stochastic case. The analytical procedure done above is referring to the case
for which the front position x f is defined to by φ(x f ) = 1/2. For the stochastic
case this procedure is ill-defined, since φ fluctuates. Rather, we choose to define
the front by

x f =
∑

k

φk, (60)

Rather than redo the theory for this definition of the front, we chose the expedient
of comparing the the stochastic results to numerical results that also define the
front position as the sum of φk , which amounts to a shift in r0. The comparison is
shown in Fig. 12.
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Fig. 10. v vs. β for D = 1, a = 1, α = 0.1, r0 = 1, ln(1/ε) = 25. Numerical simulations are compared
to the 1st order formula, Eq. (51) and the 2nd order formula, Eq. (56). (color online).

As a closing remark, we note that one of the most interesting aspects of
the above calculation (and the previously published calculations for the nearest
neighbor hopping model) is that the result does not at all depend on form of the
solution past the cutoff point; the mere existence of a cutoff is enough to force the
system to the WKB turning point and hence fix the velocity.

4. SUMMARY

We have investigated herein reaction-diffusion systems in which the hop-
ping probability exponentially decays with distance, focussing on the fluctuation

Fig. 11. vβ vs. β for D = 1, a = 1, α = 0.1, r0 = 1, ln(1/ε) = 25. Data presented are from numerical
simulations of the deterministic cutoff equations. (color online).



Front Propagation Dynamics with Exponentially-Distributed Hopping 945

Fig. 12. Comparison between stochastic results and numerical results for v vs. ln(N ) for D = 1, a = 1,
α = 0.1, r0 = 1. x f = ∑

φk . (color online).

induced anomalies seen in the same systems with continuous diffusion and nearest
neighbor hopping. As in these previously studied cases, we probe the sensitivity
to fluctuations by studying the dependence of the steady-state velocity on a cutoff
in the reaction term when the density drops below a cutoff of the order of one
particle per site. We first studied this model with no gradient, showing that, in the
absence of a cutoff, the velocity does not vanish for small D. We showed that the
BD correction for velocity due to the presence of a cutoff diverges in the case of
small D, and calculate that the velocity actually vanishes linearly for small D in
the presence of cutoff. Our model is similar to a discrete-time model describing
the spread of colonies, and we show the same generic features apply to this model
as well. We then studied the effect of introducing a quasi-static gradient into our
model. Here, even for continuum diffusion and nearest-neighbor hoppings, fluctu-
ation effects lead to a divergence of the velocity with increasing particle density N .
We found that this phenomenon is enhanced by the exponential distributed hop-
ping, so that the velocity diverges more strongly, as ln(1/ε). In fact, for long-range
hopping, β 	 1, the velocity is proportional to ln2(1/ε). Our analytical work was
confirmed by direct simulation of the cutoff deterministic equation, as well as by
comparison to the original stochastic model.

An interesting question to consider is the generalization of these results to
other implementations of diffusion. We speculate that the case of exponential
falloff of the hopping probability is critical, in the sense that any faster falloff
gives results similar to the finite-range hopping case. This distinction should arise
as a result of the exponential decay of the steady-state solution. At a technical level,
this is what gave rise to the existence of a maximal value of S′

∗, the distinguishing
feature of this calculation, compared to the finite-range and continuum hopping
cases considered previously. Of course, anomalous diffusion, implemented via
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Lévy flights, would lead to even more extreme behavior. This has already been
seen in the context of the (uncutoff) Fisher equation(25).

APPENDIX: NUMERICAL SIMULATIONS

In the body of the paper, we have presented results from direct numeri-
cal simulations of both the deterministic cutoff reaction-diffusion equation and
the stochastic particle model. Here we briefly present some relevant details of the
simulation methods, especially in reference to treating in an efficient manner the
long-range nature of the hopping.

Deterministic Equation

The simulations are essentially standard, using an Euler method time step.
The only subtlety is in handling the hopping term efficiently. A naive treatment
would involve calculating the transfer of density from every pair of sites, which
is a prohibitively expensive O(L2) operation, where L is the spatial extent of the
lattice.

To solve this difficulty, consider the density transfered to site i from all the
sites to the left; i.e., 1, 2 . . . i − 1. This transfered density, which we denote Li is
given by

Li =
i−1∑
j=1

φ j e
−γ (i− j) (A.1)

Li satisfies a simple recursion relation:

Li = (Li−1 + φi−1)e−γ (A.2)

Thus, in one pass we can calculate how much density is transferred to every site
from all its left neighbors. The density transferred from the right neighbors is done
similarly, using

Ri =
L∑

j=i+1

φ j e
−γ ( j−i) (A.3)

and the recursion relation

Ri = (Ri+1 + φi+1)e−γ (A.4)

and making a leftward pass over the sites. The simulation is thus reduced to an
O(L) problem.
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Stochastic Simulation

Our basic technique for simulating the stochastic model is to treat all the
particles on a given site in “bulk” (5,15). The number of particles that participate in
any given process (birth, death and hopping) is given by a binomial distribution,
and so can be determined by drawing a binomial deviate. The simulation performs
in parallel first a hopping step, followed by a reaction step. In the reaction step, the
number of B particles which transform into A’s at site x is again a binomial deviate,
drawn from B(NB(x), 1 − (1 − r (x)dt/N )NA(x)). Replacing the distribution by its
expected value, and setting NB(x) = N − NA(x), and defining φ = NA/N gives
Eq. (1). A dt small enough so that less than 10% of the A, B’s at a site hop and/or
react in one time step is sufficient; smaller values do not alter the results.

Again, hopping in our model provides a challenge, since we cannot afford
to draw a binomial deviate for every pair of sites. Rather, every time step we first
determine the number of particles leaving that site due to the hopping, by drawing
a single binomial deviate. We then determine how many of these move to the right,
by drawing a second deviate. Of those moving to the left (right), we determine
how many move to the nearest neighbor, by drawing a third deviate, and remove
this number from the pool of left (right) movers. Then, if any particles remain in
the pool, we determine how many move to the second nearest neighbor, removing
these from the pool, continuing in this manner till the pool is exhausted. The
number of deviates we need to choose is thus fixed (on average) by γ , independent
of L .
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